基于数字化转型大数据分析体系建设 依靠私有云和公有云的结合
发布日期: 2020-07-09 10:07:37 来源: CIO发展中心

在CIAPH于3月14日~15日举办的第七届中国医药健康行业信息化高峰论坛上,石家庄以岭药业信息总监冯亚伟,紧扣本届会议主题,分享了《基于数字化转型大数据分析体系建设》的主题演讲。

该演讲包含三部分内容:第一,结合医药产业、国家政策、行业变化做分析,总结出业务创新难、弹性不足、数据孤岛、无法运营四个现状,引出以岭药业数字化转型的策略。第二,分享以岭药业目前的建设规划,包括基础设施、数据中心、网络安全、大数据平台、能力、经营分析、大数据分析等七大方面。第三,指标口径和关键数据的风险与对策。本文对于药企做大数据体系建设具有教强的参考性。

石家庄以岭药业信息总监 冯亚伟

一、以岭药业简介

以领药业坚持以科技为先导,创立了理论、临床、科研、产业教学为一体的独特运营模式,被称为我国中医药科技成果产业化的创举;以络病理论带动中医药产业化,将现代的高新技术带入企业用来研发中药、西药和生物药。目前,重要品种专利中药十余个,覆盖心脑血管、感冒呼吸系统、肿瘤、糖尿病等四大方面,包括莲花清瘟、治疗心脑血管的通络三宝等专利药品。

二、数据分析目标

医药行业属于重监管的行业,所以,做数据分析需要结合国家政策和行业的变化,并认清企业面临的挑战:

国家政策方面最显著的变化,主要在三方面:第一,合规性检查、药品零加成;第二,两票制、药物一致性评价;第三,国家创新政策红利、从仿制药向创新药转型。

行业未来可能发生的变化集中在:依靠互联网对医生进行运营;政策导向,流通和制药行业面临洗牌;新药研发投入加大,技术创新会成为行业的趋势。

基于以上环境变化,企业面临的挑战凸显在以下三方面:第一是如何通过“数据驱动”的方式来运营企业客户,第二是如何构建集团统一的信息化平台以支撑业务,第三是需要通过新技术来提升新药研发效率。

回顾企业自身,以岭药业的信息化有四个特点:

业务创新难:一个新的业务系统开发,从头开始建设,开发周期长,迭代慢。弹性不足:用系统支撑的用户数量相对确定,直播、内容服务等新业务场景,现有系统难以支撑。运营欠缺:每次活动都能产生大量的数据,这些数据怎么收集,已经有的几十万医生数据如何使用,大量数据散落于各业务系统中,没有沉淀。数据库的“信息孤岛”问题:客户、原材料供应商、人员等,客户、原材料、供应商、人员信息等等都冗余在几十套系统中,还有大量的数据孤立于各套系统中。

针对以上问题,以岭药业提出了数字化转型策略,主要方向是:将传统垂直封闭的IT架构转变为平台化服务化的开放架构;从关注“流程”向关注“用户体验”转变(实现端到端的用户需求);从“内部工具IT系统”走向“与用户连接的实时智能系统”。

数据经营的最终目的,是降低整体成本,即降低时间成本、管理成本和风险成本,进而提高业务协作水平、监督管理能力和预测能力,同时也希望降低累计成本,即降低能耗、运维和建设成本,建设绿色信息化,云化IT、自动化IT。

三、数据分析建设规划

以岭药业近两年的重点目标,是降低成本和提升收入:降低成本方面,主要以建设自动化IT来降低运维成本;在提升收入方面,从生产营销以及厂区的智能化建设,来推动生产市场的扩大和品牌知名度的建设,提升累计收入;而整体收入的提升,则通过智能化的运营模式和大数据的收集、分析来实现。

根据以上重要目标,来展开具体的建设。

依靠私有云和公有云的结合,在上面部署相关应用,推动整体的建设。基础设施方面:提出三种云建设、三种云融合和三套网分离的方案。三种云建设指公有云、专属云和私有云;三种云融合是更多的去实现三种云的融合;公有云和专属云是与本地的服务厂商进行合作,与中心机房进行专线连接;三套网分离是利用云计算。建设安全智能体系,利用EDR产品打造三套网分离的体系,把工业网、办公网和访客网进行分离。园区和办公网进行分离,基于数据分析最终实现对于未知威胁的检测,同时对于相关的网站防篡改、持续评估、加固、响应、风险问题的闭环处理,安全策略、云端实时调优、人机共治托管安全这几个方面也有实现。我们希望通过结构化和半结构化数据的梳理,形成数据库,同时针对数据库的数据进行相关的智能分析。“能力建设”分为五个板块:数据采集能力(包括外部数据、内部数据以及互联网数据)、数据治理能力(重点是主数据的治理和数据标准化的工作)、数据处理能力、数据分析能力(针对现有数据进行相关的经营分析)、数据应用能力。

以岭药业在做主数据梳理的过程中,有一些针对性的建设规划:首先,梳理不同层面(战略层/策略层/运营层)、不同板块(采购/生产/营销/大健康)的指标;第二,规范指标模型,各指标的数据来源、计算方式、计算频率在公司层面达成共识;第三,希望能建立统一的指标库,依据公司指标体系和指标模型建立统一的指标库;第四,为经营决策分析提供支持为各级管理者提供驾驶舱及固定报表。

在大数据分析的价值方面,以岭药业想要实现两个目标:数据驱动业务创新、业务模型成为核心竞争力之一。具体实现方式有三种:购买服务,因为大数据对人才的要求非常严格,很多东西需要购买服务,比如医生画像、中药材价格趋势预测、销售预测;因为企业自身的特点不同,因此,也需要相应的外包定制开发;需要培养自己的研发力量。实施的目标分级是:逐步构建数据模型,以可视化方式支持业务决策。计划应用领域包括:商业大数据、工业大数据和智慧运营。以岭药业计划在六五期间,在营销、大健康、智慧运营领域挖掘大数据应用点,19年完成医生舆情分析、中药材价格趋势预测。

四、风险与的对策

以岭药业在数据建设过程中的第一个主要风险,来自于指标口径,缺乏一套集团与各板块充分明确和广泛认同的指标定义;项目组根据现有资料和调研状况,对指标进行了初步定义,仍需要讨论与确认。

针对这个风险,实施了两点对策:在实施阶段由集团项目组牵头,集团与各板块业务部门需明确定义每个指标的口径和计算公式,形成指标字典;在实施阶段明确指标的管理流程和制度,有序的应对指标变化和生命周期管理。

遇到的第二个主要风险,来自于关键数据,对分析涉及的关键数据(客户、客户分类、物料、物料分类),缺乏集团层面统一辨识和管理;目前还不具备利用MDM来管理集团和子公司的关键主数据。

对此风险的对策有两点:在实施阶段,由集团项目组和相关业务部门梳理BI涉及的关键数据;利用BI建立主数据对应表,并在数据加载过程中完成不同系统的主数据映射。